224 research outputs found

    Internet of Things Based Monitoring System of Leaks in Water Supply Networks Using Pressure-Based Model

    Get PDF
    Leaks in water distribution networks impose several impacts on economy, freshwater resources, water quality, health and safety. Fast leak detection and reparation is a key for lowering its negative impacts and associated costs with conventional detection techniques. This study has been used a pressure-based model to detect leaks events and its coordinates based on pressure and flow measurements. Pressure and flow data for systems that having leaks in their structure were analyzed and compared with data generated from non-leaking systems using EPANET software packages. An extension package of EPANET software (EpanetWaterGen) has been used as it has the advantage of its ability to better simulate leaks. The results show the ability of the model to detect leaks in a small and large water distribution networks with uncertainty level associated with low pressure change. The developed leak detection model utilizes pressure and flow sensors and enables the network managers and administrators to optimally place the sensors in a manner to increase efficiency and optimize cost. The system allows operators to detect leak location and volume of lost water, thus enabling a better and more efficient response to leaks, such that the network managers can address and respond to most urgent leaks and optimize the time end efforts of technical and maintenance personnel

    Internet of Things Based Monitoring System of Leaks in Water Supply Networks Using Pressure-Based Model

    Get PDF
    Leaks in water distribution networks impose several impacts on economy, freshwater resources, water quality, health and safety. Fast leak detection and reparation is a key for lowering its negative impacts and associated costs with conventional detection techniques. This study has been used a pressure-based model to detect leaks events and its coordinates based on pressure and flow measurements. Pressure and flow data for systems that having leaks in their structure were analyzed and compared with data generated from non-leaking systems using EPANET software packages. An extension package of EPANET software (EpanetWaterGen) has been used as it has the advantage of its ability to better simulate leaks. The results show the ability of the model to detect leaks in a small and large water distribution networks with uncertainty level associated with low pressure change. The developed leak detection model utilizes pressure and flow sensors and enables the network managers and administrators to optimally place the sensors in a manner to increase efficiency and optimize cost. The system allows operators to detect leak location and volume of lost water, thus enabling a better and more efficient response to leaks, such that the network managers can address and respond to most urgent leaks and optimize the time end efforts of technical and maintenance personnel

    CP Violation and Family Mixing in the Effective Electroweak Lagrangian

    Get PDF
    We construct the most general effective Lagrangian of the matter sector of the Standard Model, including mixing and CP violating terms. The Lagrangian contains the effective operators that give the leading contribution in theories where the physics beyond the Standard Model shows at a scale Λ>>MW\Lambda >>M_{W}. We perform the diagonalization and passage to the physical basis in full generality. We determine the contribution to the different observables and discuss the possible new sources of CP violation, the idea being to be able to gain some knowledge about new physics beyond the Standard Model from general considerations, without having to compute model by model. The values of the coefficients of the effective Lagrangian in some theories, including the Standard Model, are presented and we try to draw some general conclusions about the general pattern exhibited by physics beyond the Standard Model in what concerns CP violation. In the process we have had to deal with two theoretical problems which are very interesting in their own: the renormalization of the CKM matrix elements and the wave function renormalization in the on-shell scheme when mixing is present.Comment: A misplaced sentence was correcte

    Punching Shear Strength Prediction for Reinforced Concrete Flat Slabs without Shear Reinforcement

    Get PDF
    Failure of flat slabs usually occurs by punching shear mode. Current structural codes provide an experience-based design provision for punching shear strength which is often associated with high bias and variance. This paper investigates the effect of adding a horizontal reinforcement mesh at the top of the slab-column connection zone on punching the shear strength of flat slabs. A new equation considering the effect of adding this mesh was proposed to determine the punching shear strength. The proposed equation is based on the Critical Shear Crack Theory combined with the analysis of results extracted from previous experimental and theoretical studies. Moreover, the equation of load-rotation curves for different steel ratios together with the failure criterion curves were evaluated to get the design points. The investigated parameters were the slab thicknesses and dimensions, concrete strengths, size of the supporting column, and steel ratios. The model was validated using a new set of specimens and the results were also compared with the predictions of different international design codes (ACI318, BS8110, AS3600, and Eurocode 2). Statistical analysis provides that the proposed equation can predict the punching shear strength with a level of high accuracy (Mean Square Error =2.5%, Standard Deviation =0.104, Mean=1.0) and over a wide range of reinforcement ratios and compressive strengths of concrete. Most of the predictions were conservative with an underestimation rate of 12%. Doi: 10.28991/CEJ-2022-08-01-013 Full Text: PD

    Low Energy Data and a Model of Flavor Mixing

    Full text link
    We consider a model in which the third family fermions are subjected to an SU(2) interaction different from the first two family fermions. Constrained by the Z-pole data, the heavy gauge boson mass is bounded from below to be about 1.7 TeV at the 2σ2\sigma level. In this model, the flavor mixing between τ\tau and μ\mu can be so large that Br(τμνμˉντ)/Br(τeνeˉντ)Br(\tau\to \mu \bar{\nu_\mu} \nu_\tau)/ Br(\tau\to e \bar{\nu_e} \nu_\tau) and Br(τμμμ)Br(\tau\to \mu \mu \mu) provide a better constraint than the LEP/SLC data in some region of parameter space. Furthermore, flavor-changing neutral currents are unavoidable in the quark sector of the model. Significant effects to the B0B0ˉB^0-\bar{B^0} mixing and the rare decays of the KK and BB mesons, such as K±π±ννˉ,bsννˉ,Bsτ+τ,μ+μK^\pm \to \pi^\pm \nu {\bar \nu}, b \to s \nu {\bar \nu}, B_s \to \tau^+\tau^-, \mu^+\mu^- and Bs,dμ±τB_{s,d} \to \mu^\pm \tau^\mp, are expected.Comment: Latex file, 12 pages including 1 ps figur

    The transmission dynamics of Campylobacter jejuni among broilers in semi-commercial farms in Jordan

    Get PDF
    Campylobacter is the leading cause of foodborne bacterial gastroenteritis in humans worldwide, often associated with the consumption of undercooked poultry. In Jordan, the majority of broiler chicken production occurs in semi-commercial farms, where poor housing conditions and low bio-security are likely to promote campylobacter colonisation. While several studies provided estimates of the key parameters describing the within-flock transmission dynamics of campylobacter in typical high-income countries settings, these data are not available for Jordan and Middle-East in general. A Bayesian model framework was applied to a longitudinal dataset on Campylobacter jejuni infection in a Jordan flock to quantify the transmission rate of C. jejuni in broilers within the farm, the day when the flock first became infected, and the within-flock prevalence (WFP) at clearance. Infection with C. jejuni is most likely to have occurred during the first 8 days of the production cycle, followed by a transmission rate value of 0.13 new infections caused by one infected bird/day (95% CI 0.11–0.17), and a WFP at clearance of 34% (95% CI 0.24–0.47). Our results differ from published studies conducted in intensive poultry production systems in high-income countries but are well aligned with the expectations obtained by means of structured questionnaires submitted to academics with expertise on campylobacter in Jordan. This study provides for the first time the most likely estimates and credible intervals of key epidemiological parameters driving the dynamics of C. jejuni infection in broiler production systems commonly found in Jordan and the Middle-East and could be used to inform Quantitative Microbial Risk Assessment models aimed to assess the risk of human exposure/infection to campylobacter through consumption of poultry meat

    Single Top Production as a Window to Physics Beyond the Standard Model

    Get PDF
    Production of single top quarks at a high energy hadron collider is studied as a means to identify physics beyond the standard model related to the electroweak symmetry breaking. The sensitivity of the ss-channel WW^* mode, the tt-channel WW-gluon fusion mode, and the \tw mode to various possible forms of new physics is assessed, and it is found that the three modes are sensitive to different forms of new physics, indicating that they provide complimentary information about the properties of the top quark. Polarization observables are also considered, and found to provide potentially useful information about the structure of the interactions of top.Comment: References added and minor discussion improvements; results unchanged; Version to be published in PR

    Measuring effective electroweak couplings in single top production at the LHC

    Full text link
    We study the mechanism of single top production at the LHC in the framework of an effective electroweak Lagrangian, analyzing the sensitivity of different observables to the magnitude of the effective couplings that parametrize new physics beyond the Standard Model. The observables relevant to the distinction between left and right effective couplings involve in practice the measurement of the spin of the top and this can be achieved only indirectly by measuring the angular distribution of its decay products. We show that the presence of effective right-handed couplings implies that the top is not in a pure spin state. A unique spin basis is singled out which allows one to connect top decay products angular distribution with the polarized top differential cross section. We present a complete analytical expression of the differential polarized cross section of the relevant perturbative subprocess including general effective couplings. The mass of the bottom quark, which actually turns out to be more relevant than naively expected, is retained. Finally we analyze different aspects the total cross section relevant to the measurement of new physics through the effective couplings. The above analysis also applies to anti-top production in a straightforward way.Comment: 38 pages, 17 figure
    corecore